Answers

Chapter 10

Exercises

1 (a) carboxylic acid; butanoic acid
(b) halogenoalkane; 1,1-dichloropropane
(c) ketone; butanone
(d) ester; methyl ethanoate
(e) ether; methoxyethane
(f) ester; ethyl pentanoate

2 (a) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(c) $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{2} \mathrm{BrCH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}$ or $\mathrm{CH}_{2} \mathrm{BrCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
(e) $\mathrm{HCOOCH}_{2} \mathrm{CH}_{3}$
(f) $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(g) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$

3 A

1,1,1,2,2-pentachloropropane

1,1,1,2,3-pentachloropropane

1,1,1,3,3-pentachloropropane

1,1,2,2,3-pentachloropropane

7 Benzene is a cyclic molecule with a planar framework of single bonds between the six carbon atoms and six hydrogen atoms. The carbon atoms are also bonded to each other by a delocalized cloud of electrons which forms a symmetrical region of electron density above and below the plane of the ring. This is a very stable arrangement, so benzene has much lower energy than would be expected.

8 (a) Similar molar mass will mean molecules have approximately equal London (dispersion) forces and so differences in boiling point can be attributed to differences in dipole-dipole or hydrogen bonding.
(b) Solubility in hexane will increase with increasing chain length as the non-polar part of the molecule makes a larger contribution to its structure.

9 (a) $\mathrm{C}_{5} \mathrm{H}_{14}(\mathrm{l})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}(\mathrm{g})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(c) $\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

10 Bromine + ethane initiation
$\mathrm{Br}_{2} \xrightarrow{\text { UV light }} 2 \mathrm{Br} \bullet$ bromine radicals propagation
$\mathrm{Br} \cdot+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet}+\mathrm{HBr}$
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\cdot}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{Br} \cdot$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{Br}^{\bullet} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}+\mathrm{HBr}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}{ }^{\bullet}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}+\mathrm{Br}$
termination
$\mathrm{Br}^{\bullet}+\mathrm{Br}^{\bullet} \rightarrow \mathrm{Br}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\cdot}+\mathrm{Br} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$
Overall, these reactions show how a mixture of products is formed.

11 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}$

12 (a) No observable change.
(b) Burns with very smoky flame.
(c) The bromine water changes from brown to colourless.

13 (a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{aq}) \rightarrow$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{4} \mathrm{H}_{9}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

14 (a) butanone; orange \rightarrow green
(b) methanal; orange \rightarrow green
(c) no reaction; no colour change

15 Nucleophilic substitution involves an electronrich species (e.g. OH^{-}) attacking an electrondeficient carbon atom (e.g. in chloroethane), leading to substitution of the halogen functional group by the nucleophile.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Cl}^{-}$
16 Benzene has a very stable structure as a result of its symmetrical ring of delocalized electrons. Addition reactions would involve breaking this ring and therefore decreasing its stability. Substitution reactions in which one or more hydrogen atoms of the ring are replaced by other atoms or groups preserves the aromatic ring structure and therefore its stability.

Practice questions

For advice on how to interpret the marking below please see Chapter 1.
1 C
5 B
2 A
3 A
4 A
9 C
6 A
7 A
8 A
13 B

B:

C:

D:

E:

Accept condensed formulas.
Award [1 max] if \boldsymbol{A} and \boldsymbol{D} are other way round (and nothing else correct). Award [2 max] if \boldsymbol{A} and \boldsymbol{D} are other way round but one substitution product \boldsymbol{B} or \boldsymbol{E} is correct based on initial choice of \boldsymbol{A} and \boldsymbol{D}. Award [3 max] if \boldsymbol{A} and \boldsymbol{D} are other way round but both substitution products \boldsymbol{B} and \boldsymbol{E} are correct based on initial choice of \boldsymbol{A} and \boldsymbol{D}. M2 (for \boldsymbol{B}) and M5 (for \boldsymbol{E}) may also be scored for substitution product if primary chloroalkane used. Penalize missing hydrogens once only.
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
[1] for reactants and [1] for products.
(concentrated) sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$
Do not accept just H^{+}or acid.
methyl propanoate
17 (a) (the solution changes) from orange to green
(b) +6

Do not accept 6, 6+ or the use of Roman numerals unless they have already been penalized in 2(a).
(c) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+$ $3 \mathrm{CH}_{3} \mathrm{CHO}+7 \mathrm{H}_{2} \mathrm{O}$
For second equation award [1] for correct reactants and products and [1] for correct balancing.
(e) H^{+}is a reactant / OWTTE
(f) ethanoic acid / $\mathrm{CH}_{3} \mathrm{COOH} /$ acid

Accept acetic acid.

Challenge yourself

1 Complete combustion:
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
C: $-3 \rightarrow+4$
Incomplete combustion:
$2 \mathrm{C}_{2} \mathrm{H}_{6}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+6 \mathrm{H}_{2} \mathrm{O}$
C: $-3 \rightarrow+2$
2 Heterolytic describes breaking of the bond, producing two different products. The products are ions, and the reaction mechanism involves attraction of the electron density of the $\mathrm{C}=\mathrm{C}$ double bond to the positive ion.

3 The repeating unit in polystyrene is $-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)-\mathrm{CH}_{2}-$

